

DPP-3

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/59

https://youtu.be/Uk5XKgSoihc

Q 1. The pressure of the gas filled in thermally insulated container is P and temperature is T . If the ratio of specific heats of the gas is g , which of the following will be constant
(a) $P T^{\gamma-1}$
(b) $P^{\gamma} T^{1-\gamma}$
(c) $P^{1-\gamma} T^{\gamma}$
(d) $P^{-\gamma} T^{\gamma-1}$

Q 2. The ratio of slopes of adiabatic and isotherm at point of intersection is-
(a) $1: \gamma$
(b) $1: 1$
(c) $\gamma: 1$
(d) $1: 4$

Q 3. In an adiabatic expansion of a gas, its temperature
(a) always increases
(b) always decreases
(c) remains constant
(d) diminishes initially and then increases

Q 4. In an adiabatic process, temperature of a gas is doubled by compression, the final pressure will be
(a) doubled
(b) more than double
(c) less than double
(d) much greater than double

Q 5. The pressure and volume of a gas are P and V. If its pressure is reduced to $P / 2$, by (A) isothermal proces $\$(B)$ by adiabatic process then the final volume will be -
(a) more in A
(b) more in B
(c) equal in A and B
(d) depends on the nature of gas

Q 6. In adiabatic expansion
(a) $\Delta U=0$
(b) $\Delta U=$ negative
(c) $\Delta U=$ positive
(d) $W=$ zero

Q 7. In an adiabatic expansion of one mole gas initial and final temperatures are T_{1} and T_{2} respectively, then the change in internal energy of the gas is (symbols have their usual meaning)
(a) $\frac{R}{\gamma-1}\left(T_{2}-T_{1}\right)$
(b) $\frac{R}{\gamma-1}\left(T_{1}-T_{2}\right)$
(c) $R\left(T_{1}-T_{2}\right)$
(d) zero

hysicsaholics

Q 8. Two moles of an ideal monoatomic gas at $27^{\circ} \mathrm{C}$ occupies a volume of V . If the gas is expanded adiabatically to the volume 2 V , then the work done by the gas will be $[\gamma=$ $5 / 3, \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
(a) -2767.23 J
(b) 2767.23 J
(c) 2500 J
(d) -2500 J

Q 9. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The adiabatic constant of gas is
(a) $3 / 2$
(b) $4 / 3$
(c) 2
(d) $5 / 3$

Q 10. In given $\mathrm{P}-\mathrm{V}$ graph of an ideal gas two processes are isothermal and two are adiabatic, which parts describe the adiabatic process :

(a) AB and BC
(b) $A B$ and $C D$
(c) $A D$ and $B C$
(d) None of these

Q 11. A gas at NTP is suddenly compressed to oneffourth of its original volume. If γ is supposed to be $\frac{3}{2}$, then the final pressure is
(a) 4 atmosphere
(b) $\frac{3}{2}$ atmosphere
(c) 8 atmosphere
(d) $\frac{1}{4}$ atmospher

Q 12. The pressure in the tyre of a car is four times the atmospheric pressure at 300 K . If this tyre suddenty bursts, its new temperature will be ($\gamma=1.4$)
(a) $300(4)^{1.4 / 0.4}$
(b) $300\left(\frac{1}{4}\right)^{-0.4 / 1.4}$
(c) $300(2)^{-0.4 / 1.4}$
(d) $300(4)^{-0.4 / 1.4}$

Answer Key

Q. 1 c	Q. 2 c	Q. 3 b	Q. 4 b	Q. 5 a
Q. 6 b	Q. 7 a	Q. 8 b	Q. 9 a	Q. 10 c
Q. 11 c	Q. 12 d			

