

hysicsaholics						
		D	PP - 3			
Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/5		courseDetails/59		
Video Solution on YouTube:-		https://youtu.be/Uk5XKgSoihc				
Written Solution on Website:-		https://physicsaholics.com/note/notesDetalis/33		notesDetalis/33		
Q 1. The If (a) (c)	pressure of the gas fi the ratio of specific h) $PT^{\gamma-1}$) $P^{1-\gamma}T^{\gamma}$	lled in thermal leats of the gas	ly insulated container is P and to is g, which of the following with (b) $P^{\gamma}T^{1-\gamma}$ (d) $P^{-\gamma}T^{\gamma-1}$	emperature is T. Il be constant		
Q 2. Th (a) (c)	he ratio of slopes of a) 1 : $γ$) γ : 1	diabatic and is (b) 1 : 1 (d) 1 : 4	otherm at point of intersection i	8-		
Q 3. In (a) (c)	an adiabatic expansio always increases () remains constant (on of a gas, its b) always deci d) diminishes	temperature - eases initially and then increases	CS		
Q 4. In pro (a) (b) (c) (d)	an adiabatic process, ressure will be -) doubled) more than double) less than double) much greater than d	, temperature o	f a gas is doubled by compressi	on, the final		
Q 5. Th iso (a) (b) (c) (d)	The pressure and volume of a gas are P and V. If its pressure is reduced to P/2, by (A) isothermal process (B) by adiabatic process then the final volume will be - (a) more in A (b) more in B (c) equal in A and B (d) depends on the nature of gas					
Q 6. In (a) (c)	a adiabatic expansion $\Delta U = 0$ $\Delta U = positive$		(b) $\Delta U = negative$ (d) $W = zero$			
Q 7. In an (s) (a) (c)	an adiabatic expansion of T_2 respectively, the symbols have their use $\frac{R}{\gamma-1}$ $(T_2 - T_1)$ by $R(T_1 - T_2)$	sion of one mo nen the chang sual meaning	ble gas initial and final temperative in internal energy of the gas (b) $\frac{R}{\gamma-1} (T_1 - T_2)$ (d) zero	atures are T ₁ is		

Two moles of an ideal monoatomic gas at 27°C occupies a volume of V. If the gas is Q 8. expanded adiabatically to the volume 2V, then the work done by the gas will be [$\gamma =$ 5/3, R = 8.31 J/mol K

(a) -2767.23J	(b) 2767.23J
(c) 2500 J	(d) –2500 <i>J</i>

- Q 9. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The adiabatic constant of gas is
 - (b) 4/3 (a) 3/2
 - (c) 2 (d) 5/3

(c) 8 atmosphere

Q 10. In given P-V graph of an ideal gas two processes are isothermal and two are adiabatic, which parts describe the adiabatic process :

The pressure in the type of a car is four times the atmospheric pressure at 300 K. If Q 12. this tyre suddenly bursts, its new temperature will be ($\gamma = 1.4$) -0..4/1.4 (a) $300(4)^{1.4/0.4}$ (b) $300\left(\frac{1}{4}\right)$ (c) $300(2)^{-0.4/1.4}$ (d) $300(4)^{-0.4/1.4}$

Answer Key

Q.1 c	Q.2 c	Q.3 b	Q.4 b	Q.5 a
Q.6 b	Q.7 a	Q.8 b	Q.9 a	Q.10 c
Q.11 c	Q.12 d			